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AN INTEGRAL FORMULA FOR IMMERSIONS
IN EUCLIDEAN SPACE

ROBERT B. GARDNER

1. Introduction

This paper derives a general rigidity theorem and an integral formula for
immersions of a compact oriented riemannian manifold without boundary in a
euclidean space. The formula is applied to a velume-preserving immersion to
establish a simple geometric criterion that the immersion be isometric. As the
integral formula has a formal resemblance to one derived by Chern and Hsiung
in [1], we conclude the paper with some remarks about that work.

2. Notations and conventions

Let M be a compact oriented m-dimensional riemannian manifold without
boundary with metric ds*, and let

X:M— R™*"

be an immersion in an (2 + n)-dimensional euclidean space R™*=. As such
M admits a second riemannian metric,

ds* = dX.dX .

We fix the range of indices so that the capital Latin indices run from 1 to
m + n, the small Greek indices from 1 to #, and the small Latin indices from
m-+1tom + n.

Matters being so, we choose orthonormal coframes {*#} for ds* on M which
diagonalize ds* with respect to ds*. Thus

ds¥% = (¢ | ds* = Xg (9,

and the first invariants of the pair of metrics are the elementary symmetric
functions in the functions g,.

Next we choose a family of orthonormal frames {e4} on X(A) in R™*" in
such a way that {e,} are unit tangent vectors of X (M) and the pull back of the
dual coframe {r4} satisfies

¢ = hz%
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where /1, = (g,)'2. As such the volume elements of ds? and ds* are respectively
AV =t N -0 Ao, dvVvi=c* A\ ... N\ omE
The pull back of the structure equations
dey, = X¢fes ,
de? = X4 N ¢f
dpji = 205 N\ ¢¢
of R™** give rise to a skew-symmetric matrix of linear differential forms
o =3I,

called the Levi-Civita cennection for ds?, and a vector of quadratic differential
forms

2o ® gt = YA @

called the vector-valued second fundamental form.
The exterior differential equations

det = Je¥ N\ ¢,
o = —¢if
define a unique skew-symmetric matrix of linear differential forms
off = ST¥er

called the Levi-Civita connection for ds?*. This matrix allows us to introduce
a covariant differentiation with respect to ds*. Thus, if f is a function we
introduce f,, by

df = Zf. o ;
if w = Ya,** is a linear differential form then we introduce a,., by
da, — Sa g} = Ya, ;7%
if Q = Xb,,r* ® ¢ is a quadratic differential form then we introduce b,,,, by
db,y — Zgiib; — Xb, gif
= Xb,, o .

Finally we introduce the Hodge mapping defined with respect to ds*, which
is the linear mapping x, characterized by

w0 = (=Dl A o A gt N gt E A L A g

As such if w = Ya,z° is a linear differential form then d x, w is an exact
m~form, and a short calculation proves that

dsyw=23a,*N ... N\t = 3a,dV¢.
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We recall that if w = df, where f is a real-valued function, then
d =y df = 4,(HdV ,

where 4,(f) is the Laplacian of f taken with respect to the metric ds*.
These operations make sense in the case that ds* = ds?, and we will denote
the Laplacian with respect to ds* by 4.

3. 'The integral formula

Let O denote a choice of origin in R™*"; then the linear differential form
02 =23X-e)* =L1X-dX

is defined independent of the particular family of the orthonormal frames {e,}
and orthonormal coframes {z*}, and hence induces a globally defined differ-
ential form on M. As such Stokes’ theorem applies to yield the integral formula

3.1) 0= fd*,.o - fA,(%X-X)dv.
M M

The explicit expression of the resulting integral formula is simplified by the
introduction of the vector

W* = YAo e, + (I, — IDhze
(3.2) ( f

I X AN

The naturality of this vector is apparent from the following proposition.
Proposition 3.3. Let a be any fixed vector in R™*"; then

(3.3) 4fa-X) = a-h* .
Proof. Utilizing the structure equations, we have

da-X) = X(a-e)h, |
d(a-eh, — J¢iHa-ey)h,
= a-e)Aih ot + Sa-e )5, — I'iHhh ot

+ 3(a-e)hh Tyt

at ay

and hence contracting the coefficients on « and y gives (3.3) as claimed.
In particular this last Proposition is true if ds* = ds*. In this case the vector
characterized by the last proposition will be denoted by ~#. We note that

3.4 h=3dle,

which is the mean curvature vector of the immersion.



248 ROBERT B. GARDNER

With this preparation the integral formula obtained from (3.1) may be stated
as follows.

Theorem 3.4. Let M be a compact oriented manifold without boundary
endowed with the riemannian metric ds* = X (%), and let

X: M > Rntr

be an immersion with induced metric ds* = Yg (¥}, then
(3.5) 0= f(Zga + X B0V
M

Proof. Since

d(X -e)h, — (X -e)h gt
= t*h, + 2(X-e)pih, + 2(X-e)pih,
+ (X-e)dh, — 3(X-e)hyi
= g.o% + (X e )¢l — ¢Dh,
+2(X - e)(dh,5, — hgidh,
+ Z(X"ei)@iha s
we have
(S(X-eJh,),, = 38, + 3(X-e ) — ',
+ 2(X-e)(hd)), + 2(X-e)Al.zg,
=Yg, + X-h*,
which gives (3.5) by integration.

We note that applying the formula to the special case, where ds* = ds®,
gives

(3.6) 0= f(m—]—X-h)dV,

M

which is a classical formula of Minkowski.

"~ 4. Applications fo volume-preserving immersions

Theorem 4.1. Let X: M — R™'" be an immersion of a compact oriented
riemannian manifold without boundary. Then among all volume-preserving
diffeomorphisms, the isometries are characterized as those for which the

integral
— f X h*dv
M
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attains the minimal value of m times the value of vol. M.
Proof. By Newton’s inequality, the hypothesis of volume-preserving
implies

L e, > (rgym =1,
m

or

(4.2) g, —m>0

with equality if and only if

(4.3) =1 (U<a<m.

As such substraction of (3.5) from (3.6), together with the hypothesis that
dvt = dV, gives

0= f [(Sg. — m) + X-(h* — WAV,
M
but then (4.2) implies
fX-(h* — BV <0,
M

or

fX-h*dV‘F < fX-th — _mvolM .
M ;‘[

If this maximum is achieved, then the integral formula becomes

0= f(Z’ga — mydv

M

and hence (4.2) forces
Zga —m=90 H

and the equality statement (4.3) implies that the immersion is an isometry.
Corollary 4.4, Let X: M — R™*" be a volume-preserving immersion of a
compact oriented riemannian manifold without boundary. Then

h* = h

if and only if the immersion is isometric.
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5. A general rigidity theorem

Now consider the situation that the metric ds* comes from a second
immersion. Thus we have the picture

M X Rm+7z

N
X#\
Rm+7z

with ds* = dX-dX and ds* = dx*. dx*.
Theorem 5. A necessary and sufficient condition that two immersions of a
compact oriented manifold without boundary differ by a translation is that

h* = h,

where h* is defined by (3.2), and hy is the mean curvature vector of the X*
immersion.

Proof. By Proposition 3.3 we have
44X — XH.a=(* —hy)-a.

Therefore X — X* = constant if and only if #* = h,.

As a corollary we obtain the rigidity theorem that two isometric immersions
of a compact oriented riemannian manifold without boundary differ by a
translation if and only if they have the same mean curvature vectors. In the
case of hypersurfaces this was a problem proposed by Minkowski.

6. Remarks on the paper of Chern and Hsiung

The integral formula in [1] was derived for volume-preserving diffeo-
morphisms between compact submanifolds of euclidean space without
boundaries. One of the basic tools in [1] was the observation that Gardings
inequality applies to a classical mixed invariant of two positive definite
quadratic forms. We will now show that a direct calculation of the mixed
invariant allows us to deduce their inequality from Newton’s inequality.
C. C. Hsiung has pointed out that this is done by a different method in [2].

Let V be an n-dimensional real vector space, and Hom (V, V) the real vector
space of all n X n matrices with real coefficients. Then for X, Y ¢ Hom (V, V)
we introduce functions PH(X, Y)for 1 <i<n —1by

det (X + ¢Y) =detX + tP(X,Y) + --- + P YX,Y) 4 t"detY .
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In particular
PX,Y) = % det (X + 1Y)],_, = <IX + 1¥], d(det)>(X) ,

where [X + tY] is the tangent vector to the curve X + tY in Hom (V, V),
and { , » isthe canonical bilinear pairing between the tangent and cotangent
spaces of Hom (V, V) at X.

If we introduce the natural coordinates

7y Hom (V, V) — R
defined for X = (X;,) by r,;(X) = X,;, then
odet X

Tij

d(det) |y = 3

dez'j lx

= trace (cofactor X -dX) ,

and
Ix +_tY]: aXx5 = jt ﬂij(X + 1Y),
= (@) =Y.

Therefore by linearity
pX, Y) = trace (cofactor X.Y) .
If X is non-singular, then
cofactor X = (det X)X !,

and hence the classical mixed invariant of the pair X, Y utilized by Chern and
Hsiung in [1] is

_ P(X,Y)

6.1
) ndet X

= ltrace X1Y).
n

The basic inequality used in [1] is thus equivalent to the fact that positive
definite symmetric matricies X, Y satisfy

l trace (X~1.Y) > < detY )1/11
n

det X

with equality if and only if Y is congruent by an orthogonal matrix to a
multiple of X. By diagonalizing Y with respect to X this is an immediate
consequence of Newton’s inequality.
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Utilizing the explicit expression (6.1) of the mixed invariant, Donald Singley
has proved that the integral formula in [1] may be generalized to immersions
of compact riemannian manifolds without boundary by the integral formula

0= [dssixe.
M
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