AN INTEGRAL FORMULA FOR IMMERSIONS IN EUCLIDEAN SPACE

ROBERT B. GARDNER

1. Introduction

This paper derives a general rigidity theorem and an integral formula for immersions of a compact oriented riemannian manifold without boundary in a euclidean space. The formula is applied to a volume-preserving immersion to establish a simple geometric criterion that the immersion be isometric. As the integral formula has a formal resemblance to one derived by Chern and Hsiung in [1], we conclude the paper with some remarks about that work.

2. Notations and conventions

Let M be a compact oriented m-dimensional riemannian manifold without boundary with metric $ds^{2\sharp}$, and let

$$X: M \to \mathbb{R}^{m+n}$$

be an immersion in an (m + n)-dimensional euclidean space R^{m+n} . As such M admits a second riemannian metric,

$$ds^2 = dX \cdot dX$$

We fix the range of indices so that the capital Latin indices run from 1 to m + n, the small Greek indices from 1 to m, and the small Latin indices from m + 1 to m + n.

Matters being so, we choose orthonormal coframes $\{\tau^{\alpha\sharp}\}$ for $ds^{2\sharp}$ on M which diagonalize ds^2 with respect to $ds^{2\sharp}$. Thus

$$ds^{2\sharp} = \Sigma(\tau^{\alpha\sharp})^2 , \qquad ds^2 = \Sigma g_{\alpha}(\tau^{\alpha\sharp})^2 ,$$

and the first invariants of the pair of metrics are the elementary symmetric functions in the functions g_{α} .

Next we choose a family of orthonormal frames $\{e_A\}$ on X(M) in R^{m+n} in such a way that $\{e_\alpha\}$ are unit tangent vectors of X(M) and the pull back of the dual coframe $\{\tau^A\}$ satisfies

$$\tau^{\alpha} = h_{\alpha} \tau^{\alpha \sharp}$$

Received July 3, 1968, and, in revised form, September 10, 1968.

where $h_a = (g_a)^{1/2}$. As such the volume elements of ds^2 and $ds^{2\sharp}$ are respectively

$$dV = \tau^1 \wedge \cdots \wedge \tau^m$$
, $dV^{\sharp} = \tau^{1\sharp} \wedge \cdots \wedge \tau^{m\sharp}$.

The pull back of the structure equations

$$egin{aligned} de_{A} &= arSigma arphi_{A}^{B} e_{B} \;, \ d au^{B} &= arSigma au^{A} \, \wedge \, arphi_{A}^{B} \;, \ darphi_{A}^{B} &= arSigma arphi_{A}^{C} \, \wedge \, arphi_{C}^{B} \end{aligned}$$

of R^{m+n} give rise to a skew-symmetric matrix of linear differential forms

$$\varphi_a^\beta = \Sigma \Gamma_{ar}^\beta \tau^r$$
 ,

called the Levi-Civita cennection for ds^2 , and a vector of quadratic differential forms

$$\Sigma \tau^{\alpha} \odot \varphi^{a}_{\alpha} = \Sigma A^{a}_{\alpha\beta} \tau^{\alpha} \odot \tau^{\beta}$$
 ,

called the vector-valued second fundamental form.

The exterior differential equations

$$d au^{lpha\sharp} = \Sigma au^{lpha\sharp} \wedge arphi_{ au}^{lpha\sharp} \; , \ arphi_{ au}^{lpha\sharp} = -arphi_{lpha}^{ au\sharp} \; ,$$

define a unique skew-symmetric matrix of linear differential forms

$$arphi_{\scriptscriptstylelpha}^{\scriptscriptstyleeta\sharp}=arSigma\Gamma_{\scriptscriptstylelpha\gamma}^{\scriptscriptstyleeta\sharp} au^{\scriptscriptstyle\gamma}$$
 ,

called the Levi-Civita connection for $ds^{2\sharp}$. This matrix allows us to introduce a covariant differentiation with respect to $ds^{2\sharp}$. Thus, if f is a function we introduce $f_{;\alpha}$ by

$$df = \Sigma f_{:\alpha} \tau^{\alpha \sharp}$$
;

if $w = \sum a_{\alpha} \tau^{\alpha \beta}$ is a linear differential form then we introduce $a_{\alpha;\beta}$ by

$$da_{\alpha} - \Sigma a_{\gamma} \varphi_{\alpha}^{r\sharp} = \Sigma a_{\alpha;\beta} \tau^{\beta\sharp}$$
;

if $Q=\Sigma b_{\alpha\beta} au_{\alpha}^{\alpha\sharp} \odot au^{\beta\sharp}$ is a quadratic differential form then we introduce $b_{\alpha\beta;\gamma}$ by

$$\begin{split} db_{\scriptscriptstyle{\alpha\beta}} &= \varSigma \varphi_{\scriptscriptstyle{\alpha}}^{\scriptscriptstyle{\gamma\sharp}} b_{\scriptscriptstyle{\gamma\beta}} - \varSigma b_{\scriptscriptstyle{\alpha\gamma}} \varphi_{\scriptscriptstyle{\beta}}^{\scriptscriptstyle{\gamma\sharp}} \\ &= \varSigma b_{\scriptscriptstyle{\alpha\beta;\gamma}} \tau^{\scriptscriptstyle{\gamma\sharp}} \; . \end{split}$$

Finally we introduce the Hodge mapping defined with respect to ds^{2} , which is the linear mapping * characterized by

$$*_{\sharp}(\tau^{\alpha\sharp}) = (-1)^{\alpha-1}\tau^{1\sharp} \wedge \cdots \wedge \tau^{\alpha-1\sharp} \wedge \tau^{\alpha+1\sharp} \wedge \cdots \wedge \tau^{m\sharp} .$$

As such if $w = \sum a_a \tau^{a\sharp}$ is a linear differential form then $d *_{\sharp} w$ is an exact *m*-form, and a short calculation proves that

$$d *_{\sharp} w = \Sigma a_{\alpha;\alpha} \tau^{1\sharp} \wedge \cdots \wedge \tau^{m\sharp} = \Sigma a_{\alpha;\alpha} dV^{\sharp}.$$

We recall that if w = df, where f is a real-valued function, then

$$d *_{\bullet} df = \Delta_{\bullet}(f) dV$$
,

where $\Delta_{\sharp}(f)$ is the Laplacian of f taken with respect to the metric $ds^{2\sharp}$.

These operations make sense in the case that $ds^{2\ddagger} = ds^2$, and we will denote the Laplacian with respect to ds^2 by Δ .

3. The integral formula

Let 0 denote a choice of origin in R^{m+n} ; then the linear differential form

$$\Omega = \sum (X \cdot e_{\alpha}) \tau^{\alpha} = \frac{1}{2} X \cdot dX$$

is defined independent of the particular family of the orthonormal frames $\{e_{\alpha}\}$ and orthonormal coframes $\{\tau^{\alpha}\}$, and hence induces a globally defined differential form on M. As such Stokes' theorem applies to yield the integral formula

$$0 = \int_{\mathbb{R}} d *_{\sharp} \Omega = \int_{\mathbb{R}} \Delta_{\sharp}(\frac{1}{2}X \cdot X) dv .$$

The explicit expression of the resulting integral formula is simplified by the introduction of the vector

(3.2)
$$h^* = \sum A_{\alpha\alpha}^{\alpha} h_{\alpha}^2 e_{\alpha} + \sum (\Gamma_{\alpha\alpha}^{\beta} - \Gamma_{\alpha\alpha}^{\beta\beta}) h_{\alpha}^2 e_{\beta} + \sum (h_{\alpha} \delta_{\alpha}^{\beta})_{;\beta} e_{\beta}.$$

The naturality of this vector is apparent from the following proposition.

Proposition 3.3. Let a be any fixed vector in \mathbb{R}^{m+n} ; then

$$(3.3) \Delta_{\sharp}(a \cdot X) = a \cdot h^*.$$

Proof. Utilizing the structure equations, we have

$$\begin{split} d(a \cdot X) &= \varSigma(a \cdot e_{\scriptscriptstyle a}) h_{\scriptscriptstyle a} \tau^{\scriptscriptstyle a\sharp} \;, \\ d(a \cdot e_{\scriptscriptstyle a}) h_{\scriptscriptstyle a} &= \varSigma \varphi_{\scriptscriptstyle a}^{\beta\sharp} (a \cdot e_{\scriptscriptstyle \beta}) h_{\scriptscriptstyle \beta} \\ &= \varSigma(a \cdot e_{\scriptscriptstyle i}) A_{\scriptscriptstyle a\gamma}^i h_{\scriptscriptstyle a} h_{\scriptscriptstyle 7} \tau^{\tau\sharp} + \varSigma(a \cdot e_{\scriptscriptstyle \beta}) (\varGamma_{\scriptscriptstyle a\gamma}^{\beta} - \varGamma_{\scriptscriptstyle a\gamma}^{\beta\sharp}) h_{\scriptscriptstyle a} h_{\scriptscriptstyle 7} \tau^{\tau\sharp} \\ &+ \varSigma(a \cdot e_{\scriptscriptstyle \beta}) h_{\scriptscriptstyle r} h_{\scriptscriptstyle a} \varGamma_{\scriptscriptstyle a\gamma}^{\beta\sharp}) \tau^{\tau\sharp} \;, \end{split}$$

and hence contracting the coefficients on α and γ gives (3.3) as claimed.

In particular this last Proposition is true if $ds^{2\frac{1}{4}} = ds^2$. In this case the vector characterized by the last proposition will be denoted by h. We note that

$$(3.4) h = \sum A_{\alpha\alpha}^i e_i ,$$

which is the mean curvature vector of the immersion.

With this preparation the integral formula obtained from (3.1) may be stated as follows.

Theorem 3.4. Let M be a compact oriented manifold without boundary endowed with the riemannian metric $ds^{2\xi} = \Sigma(\tau^{\alpha\xi})^2$, and let

$$X: M \to R^{m+n}$$

be an immersion with induced metric $ds^2 = \sum g_{\alpha}(\tau^{\alpha \sharp})^2$, then

$$(3.5) 0 = \int_{M} (\Sigma g_{\alpha} + X \cdot h^{*}) dV^{*}.$$

Proof. Since

$$\begin{split} d(X \cdot e_{\alpha})h_{\alpha} &= (X \cdot e_{\gamma})h_{\gamma}\varphi_{\alpha}^{\tau *} \\ &= \tau^{\alpha}h_{\alpha} + \Sigma(X \cdot e_{\gamma})\varphi_{\alpha}^{\tau}h_{\alpha} + \Sigma(X \cdot e_{i})\varphi_{\alpha}^{i}h_{\alpha} \\ &+ (X \cdot e_{\alpha})dh_{\alpha} - \Sigma(X \cdot e_{\gamma})h_{\gamma}\varphi_{\alpha}^{\tau *} \\ &= g_{\alpha}\tau^{\alpha *} + \Sigma(X \cdot e_{\gamma})(\varphi_{\alpha}^{\tau} - \varphi_{\alpha}^{\tau *})h_{\alpha} \\ &+ \Sigma(X \cdot e_{\gamma})(dh_{\alpha}\delta_{\alpha}^{\tau} - h_{\gamma}\varphi_{\alpha}^{\tau *})h_{\alpha} \\ &+ \Sigma(X \cdot e_{\gamma})\varphi_{\alpha}^{i}h_{\alpha} \,, \end{split}$$

we have

$$\begin{split} (\Sigma(X \cdot e_{\alpha})h_{\alpha})_{;\alpha} &= \Sigma g_{\alpha} + \Sigma(X \cdot e_{\alpha})(\Gamma_{\gamma \gamma}^{\alpha} - \Gamma_{\gamma \gamma}^{\alpha \sharp})g_{\gamma} \\ &+ \Sigma(X \cdot e_{\gamma})(h_{\alpha}\delta_{\alpha}^{\gamma})_{;\alpha} + \Sigma(X \cdot e_{i})A_{\alpha\alpha}^{i}g_{\alpha} \\ &= \Sigma g_{\alpha} + X \cdot h^{*} \;, \end{split}$$

which gives (3.5) by integration.

We note that applying the formula to the special case, where $ds^{2} = ds^2$, gives

$$(3.6) 0 = \int_{M} (m + X \cdot h) dV,$$

which is a classical formula of Minkowski.

4. Applications to volume-preserving immersions

Theorem 4.1. Let $X: M \to R^{m+n}$ be an immersion of a compact oriented riemannian manifold without boundary. Then among all volume-preserving diffeomorphisms, the isometries are characterized as those for which the integral

$$-\int_{M}X\cdot h^{*}dV$$

attains the minimal value of m times the value of vol. M.

Proof. By Newton's inequality, the hypothesis of volume-preserving implies

$$\frac{1}{m}\Sigma g_{\alpha} \geq (\Pi g_{\alpha})^{1/m} = 1 ,$$

or

$$(4.2) \Sigma g_{\alpha} - m \ge 0$$

with equality if and only if

$$(4.3) g_{\alpha} = 1 (1 \le \alpha \le m).$$

As such substraction of (3.5) from (3.6), together with the hypothesis that $dV^{\ddagger} = dV$, gives

$$0 = \int_{\mathcal{C}} [(\Sigma g_{\alpha} - m) + X \cdot (h^* - h)] dV ,$$

but then (4.2) implies

$$\int_{V} X \cdot (h^* - h) dV \le 0 ,$$

or

$$\int X \cdot h^* dV^* \le \int X \cdot h \, dV = -m \operatorname{vol} M.$$

If this maximum is achieved, then the integral formula becomes

$$0=\int_{M}(\Sigma g_{\alpha}-m)dV,$$

and hence (4.2) forces

$$\Sigma g_{\alpha} - m = 0$$
,

and the equality statement (4.3) implies that the immersion is an isometry.

Corollary 4.4. Let $X: M \to R^{m+n}$ be a volume-preserving immersion of a compact oriented riemannian manifold without boundary. Then

$$h^* = h$$

if and only if the immersion is isometric.

5. A general rigidity theorem

Now consider the situation that the metric $ds^{2\sharp}$ comes from a second immersion. Thus we have the picture

$$M \xrightarrow{X} R^{m+n}$$

$$R^{m+n}$$

with $ds^2 = dX \cdot dX$ and $ds^{2\sharp} = dx^{\sharp} \cdot dx^{\sharp}$.

Theorem 5. A necessary and sufficient condition that two immersions of a compact oriented manifold without boundary differ by a translation is that

$$h^* = h_*$$
,

where h^* is defined by (3.2), and h_* is the mean curvature vector of the X^* immersion.

Proof. By Proposition 3.3 we have

$$\Delta_{\sharp}(X - X^{\sharp}) \cdot a = (h^* - h_{\sharp}) \cdot a.$$

Therefore $X - X^{\sharp} = \text{constant if and only if } h^{*} = h_{\sharp}$.

As a corollary we obtain the rigidity theorem that two isometric immersions of a compact oriented riemannian manifold without boundary differ by a translation if and only if they have the same mean curvature vectors. In the case of hypersurfaces this was a problem proposed by Minkowski.

6. Remarks on the paper of Chern and Hsiung

The integral formula in [1] was derived for volume-preserving diffeomorphisms between compact submanifolds of euclidean space without boundaries. One of the basic tools in [1] was the observation that Gårdings inequality applies to a classical mixed invariant of two positive definite quadratic forms. We will now show that a direct calculation of the mixed invariant allows us to deduce their inequality from Newton's inequality. C. C. Hsiung has pointed out that this is done by a different method in [2].

Let V be an n-dimensional real vector space, and $\operatorname{Hom}(V, V)$ the real vector space of all $n \times n$ matrices with real coefficients. Then for $X, Y \in \operatorname{Hom}(V, V)$ we introduce functions $P^{i}(X, Y)$ for $1 \le i \le n - 1$ by

$$\det(X + tY) = \det X + tP^{1}(X, Y) + \cdots + t^{n-1}P^{n-1}(X, Y) + t^{n} \det Y.$$

In particular

$$P^{\iota}(X, Y) = \frac{d}{dt} \det (X + tY)|_{t=0} = \langle [X + tY], d(\det) \rangle (X) ,$$

where [X + tY] is the tangent vector to the curve X + tY in Hom (V, V), and \langle , \rangle is the canonical bilinear pairing between the tangent and cotangent spaces of Hom (V, V) at X.

If we introduce the natural coordinates

$$\pi_{i,i} \colon \operatorname{Hom}(V, V) \to R$$

defined for $X = (X_{tm})$ by $\pi_{ij}(X) = X_{ij}$, then

$$d(\det)|_{X} = \Sigma \frac{\partial \det X}{\partial \pi_{ij}} d\pi_{ij}|_{X}$$

= trace (cofactor $X \cdot dX$),

and

$$\langle [X+tY], dX \rangle = \frac{d}{dt} \pi_{ij} (X+tY)|_{t=0}$$

= $(\pi_{ij}(Y)) = Y$.

Therefore by linearity

$$p^{1}(X, Y) = \text{trace (cofactor } X \cdot Y)$$
.

If X is non-singular, then

cofactor
$$X = (\det X)X^{-1}$$
.

and hence the classical mixed invariant of the pair X, Y utilized by Chern and Hsiung in [1] is

(6.1)
$$Y_X = \frac{P^1(X, Y)}{n \det X} = \frac{1}{n} \operatorname{trace} (X^{-1} \cdot Y) .$$

The basic inequality used in [1] is thus equivalent to the fact that positive definite symmetric matricies X, Y satisfy

$$\frac{1}{n}\operatorname{trace}\left(X^{-1}\cdot Y\right)\geq\left(\frac{\det Y}{\det X}\right)^{1/n}$$

with equality if and only if Y is congruent by an orthogonal matrix to a multiple of X. By diagonalizing Y with respect to X this is an immediate consequence of Newton's inequality.

Utilizing the explicit expression (6.1) of the mixed invariant, Donald Singley has proved that the integral formula in [1] may be generalized to immersions of compact riemannian manifolds without boundary by the integral formula

$$0=\int_{M}d**^{-1}_{\sharp}*\Omega.$$

References

- [1] S. S. Chern & C. C. Hsiung, On the isometry of compact submanifolds in Euclidean
- space, Math. Ann. 149 (1963) 278-285.

 [2] B. H. Rhodes, On some inequalities of Gårding, Acad. Roy. Belg. Bull. Cl. Sci. (5) 52 (1966) 594-599.

COLUMBIA UNIVERSITY